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A method for the detection of approximate molecular

symmetry in crystal structures has been developed. The

point-group symmetry is assigned to each molecule and the

relevant symmetry elements can be visualized, superimposed

on the molecule. The method has been validated against

reference structures with exact symmetry subjected to small

random perturbation.
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1. Introduction

The relationship of molecular shape to the observed crystal

packing arrangements is governed primarily by the Kitaigor-

odskii principle of close packing (Kitaigorodskii, 1973). Some

basic rules for the packing of molecules in periodic arrays have

been summarized more recently (Brock & Dunitz, 1994). It

should be possible to derive more sophisticated packing rules

as more data accumulates in the Cambridge Structural Data-

base (hereafter, CSD; Allen & Kennard, 1993). Relationships

between retained molecular symmetry and space-group

selection have been identi®ed in the CSD (Wilson, 1993) and

in order to further such research, it is desirable to detect

molecular symmetry from the given atomic coordinates. This

paper reports an algorithm for this purpose.

Molecular symmetry does sometimes relate directly to the

crystallographic space-group symmetry when considering the

crystal packing. In such cases, an ordered symmetric molecule

can be located on a special position in a space group, if the

special position has a point group that either corresponds

directly to the molecular point group or to a sub-group of the

molecular point group. In these cases, the molecular symmetry

and crystallographic symmetry coincide and the molecular

point group must correspond exactly to at least the point

group of the special position. If this is not the case, the

molecule must be crystallographically disordered on that site.

Studies of space group frequencies have shown that certain

space groups occur more frequently when a particular one of

its special positions is occupied. The most striking example

being mirror symmetric space groups which never occur for

ordered crystal structures unless the mirror plane is occupied

by at least one residue (Wilson, 1993; Brock & Dunitz, 1994;

Cole, 1995).

Most molecules, regardless of their molecular symmetry, are

located in general positions in their crystal structures. It has

been shown that molecular centres frequently lie at certain

preferred general positions (Motherwell, 1997), with no

obvious correlation with molecular symmetry.

It would be interesting to analyse the relationship between

molecular point group, space-group selection and special

position occupation in crystal structures. For this purpose a



rapid method for analysing CSD entries for both exact and

approximate molecular symmetry is needed. The method

reported here is a combination of a two-dimensional topolo-

gical symmetry check followed by three-dimensional

symmetry perception. An alternative algorithm has been

proposed recently by Ivanov & SchuÈ uÈ rmann (1999). There are

also similarities between our method of symmetry perception

and that of Pilati & Forni (1998).

2. Methodology

2.1. Topological analysis

A molecule can be said to have a speci®c point group if

every symmetry element within the point group maps each

atom within the molecule either to itself or to another atom in

a chemically identical environment. This requirement of atoms

being in chemically identical environments gives rise to the

®rst part of this perception algorithm. A topological analysis

of the chemical diagram treated as a two-dimensional mole-

cular graph is used to subdivide the molecule into groups of

topologically identical atoms. Atoms in chemically identical

environments must be topologically equivalent in the two-

dimensional substructure and so the topological groups

represent sets of atoms that can possibly be related by three-

dimensional symmetry operations. The size of the largest

topological group also indicates the maximum order of any

symmetry element within the molecular point group with the

noted exceptions of linear and planar molecules.

The topological analysis is applied using a variant of an

algorithm due to Morgan (1965) which is commonly used for

enumerating chemical graphs. The basic Morgan algorithm

attempts to assign unique numbers to the atomic nodes of a

graph by comparing the extended connectivity of each node in

a stepwise manner. Its operation is exempli®ed in Table 1 for

molecule (I). In the ®rst cycle of the algorithm the j nodes of

the graph are numbered arbitrarily, as in (I), and the number

of connections, A(1,j), to each of these nodes is then calculated

as shown in the ®rst line of Table 1. The number of unique

A(1,j) values, Nu, is also calculated. In subsequent cycles, i,

values of A(i,j) are calculated as the sum of the values of

A(iÿ 1, k) for the set of nodes {K} which are bonded to node j.

The new value of Nu is calculated for each cycle. This process

is repeated until the value of Nu for the current cycle is less

than or equal to the Nu value from the previous cycle, or until

unique values of A(i,j) are generated for every node in the

graph, i.e. Nu = j. For molecule (I), the algorithm terminates

after cycle 4 (Table 1, Nu = 6) and the extended connectivity

values from the (iÿ 1)th cycle are used to assign the canonical

(Morgan) atom numbering: atom 3 in the original arbitrary

scheme has the highest A(3,j) value (16), and is assigned as

atom 1 in the canonical scheme. The three atoms bonded to 3

are then renumbered as 2, 3 and 4 according to their A(3,j)

values, and so on.

The important factor to note about the basic algorithm, as

far as topological symmetry is concerned, is that atoms in

identical environments cannot be distinguished. Thus,

symmetrically related atoms, e.g. 4 and 9 in (I), will always be

assigned the same A(i,j) values, irrespective of how many

cycles are carried out. However, the basic algorithm does not

fully partition atoms into symmetry-related subsets. Thus,

atoms 1, 11 and 13 have identical A(3,j) values in Table 1, but

only atoms 11 and 13 exist in identical environments, the

A(3,1) value being an accidental equivalence.

For the detection of topological symmetry, signi®cant

improvements can be obtained by using each cycle of the basic

Morgan algorithm to index atoms in a hierarchical manner. At

each step of the extended algorithm, nodes are partitioned

into groups {l,m,n,...} which have the same connectivity index

A(i,j), and the number of unique groups, Ng, is calculated, as

illustrated in the rightmost columns of Table 1. This process is

repeated on each cycle until all atoms are assigned to a unique

group, Ng = j, or the cycle yields no further partitioning,

Ng(i) � Ng(i ÿ 1). For molecule (I), Table 1 shows that no

further partitioning occurs at cycle 6 and the eight partitions of

cycle 5 (or 6) reveal the eight topologically unique sets of

atoms in the molecule.
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Table 1
Topological index for each node in the given molecular graph of 13 atoms with the group partitions.

Nu is the number of unique index values A(i,j) in the set of atoms j = 1,13. Ng is the number of partitions of atoms into topological groups based on the topological
index A(i) for cycle i of the application of the Morgan algorithm. The basic Morgan algorithm terminates at cycle 4 because Nu does not change. The extended
algorithm terminates at cycle 6 because Ng does not change.

1 2 3 4 5 6 7 8 9 10 11 12 13 Nu Ng Partitioned groups

A(1) 1 2 3 2 3 2 2 3 2 2 1 2 1 3 3 {3,5,8},{2,4,6,7,9,10,12},{1,11,13}
A(2) 2 4 6 6 6 5 5 6 6 4 2 4 2 4 4 {3,5,8},{4,9},{6,7},{2,10,12},{1,11,13}
A(3) 4 8 16 12 15 11 11 15 12 8 4 8 4 6 6 {3},{5,8},{4,9},{6,7},{2,10,12},{1,11,13}
A(4) 8 20 32 31 31 26 26 31 31 19 8 19 8 6 7 {3},{5,8},{4,9},{6,7},{2},{10,12},{1,11,13}
A(5) 20 40 82 76 76 57 57 76 63 39 19 39 29 8 {3},{5,8},{4,9},{6,7},{2},{10,12},{1},{11,13}

A(6) 40 102 166 158 159 133 133 159 158 95 39 95 39 8
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Both the basic and extended Morgan algorithms can be

improved further by incorporating chemical information for

each node (atom) of the molecular graph, so that fewer steps

are required to achieve complete partitioning. In the extended

algorithm, the groups can be partitioned initially so that only

atoms of the same type, e.g. same element symbol and primary

connectivity, can be in the same group. Bond type information

can also be used to weight the connectivity scores in the ®rst

cycle so as to obtain an improved primary partition.

2.2. Summary of procedure

2.2.1. Three-dimensional symmetry perception. The topo-

logical analysis described above detects possible molecular

symmetry in a two-dimensional graph and sub-divides the

graph into groups of atoms that could possibly be related by a

symmetry operation. This information is then passed to a

geometrical rule-based approach which tests if a molecule

possesses actual symmetry within certain user-de®ned toler-

ances. The three-dimensional symmetry perception algorithm

works as follows.

(i) Transform the coordinate set so that the eigenvectors of

the inertial tensor of the coordinate set coincide with the axis

system. In lower-order point groups, symmetry elements

coincide with the directions of these eigenvectors and will thus

be detected in stage 2. In higher-order point groups, some or

all of the eigenvectors are degenerate and lie in arbitrary

directions.

If two eigenvalues are less than a given tolerance value, the

distance between each atom and the principal inertial axis is

calculated, and if the distances of all atoms from the axis are

less than 0.1 AÊ the molecule is considered to be linear.

(ii) Test along the coordinate axes for symmetry of

maximum order N; the method of symmetry testing being

given in detail below. N is de®ned as the largest number of

atoms in any topological group, or 2 if no topological group

has greater than two atoms, which ensures that ¯at molecules

are detected as having mirror symmetry. If all eigenvectors of

the inertial tensor are non-degenerate within a given toler-

ance, the highest point symmetry possible is D2h(mmm) so

only axes up to the order two are considered.

(iii) Calculate the centroids of all pairs of topologically

equivalent atoms and test every origin±centroid direction for

symmetry up to order N.

(iv) If any symmetry axes of the same type are found then

check that they are not within an angular difference of one

another. If they are, average the overall direction of the

equivalent vectors and include only the operator that corre-

sponds to the average direction.

(v) If (a) the maximum symmetry order detected so far is

less than 3, (b) twofold axes are present within the ®nal set and

(c) the eigenvalues of the inertial tensor are threefold

degenerate, then test the direction that corresponds to the sum

of each selection of three axes from this subset. This test

ensures that the threefold axes in Th symmetric molecules are

detected.

(vi) Expand the ®nal set of operations by cross multiplying

each operator with itself and other operators, and comparing

the resultant matrices.

(vii) Use the trace and determinant of the operator matrices

to identify the `character' of the operator and then use this to

generate a count of the operators observed, Nmats.

(viii) Compare this count with reference values of Nmats

from point-group character tables to identify the molecular

point group (see Table 2).

2.3. Symmetry testing

The following algorithm is applied to test an axis for

symmetry. Firstly, we de®ne two tolerances: TOL1: a

geometric distance, set to 0.1 AÊ by default; TOL2: an angle, set

to 5.0� by default. A similar distance tolerance de®nition can

be found in the program SYMMOL of Pilati & Forni (1998).

(i) Generate the symmetry operations that correspond to a

symmetry element of type S around the prescribed axis (see

Giacovazzo, 1993).

(ii) Ignore atoms that are within TOL1 AÊ of the fragment

centroid, since these must map back onto themselves chemi-

cally.

(iii) Apply each operator g in turn to every other atom Xi in

the fragment, generating new coordinates g(Xi).

(iv) Loop through all the original coordinates to search for

an atom Yi (optionally of the same type or in the same two-

dimensional topological group established by the extended

Morgan algorithm) that lies within tolerances of the trans-

formed coordinates.

Using these steps, the following geometrical quantities are

calculated: (a) d(Yi) and dg(Xi), the distances of the atoms Yi

Table 2
The most commonly occurring molecular point groups in the CSD
together with the number of symmetry operations, Nmats.

Each operation corresponds to a matrix derived by the program.

Nmats Symmetry

1 C1(1)
2 C2(2), Cs(m), Ci(�1)
3 C3(3)
4 C2v(2mm), C2h(2/m), D2(222), C4(4), S4(�4)
5 C5(5)
6 C3v(3m), C3h(3/m), C3i(�3), D3(32), C6(6)
7 C7(7)
8 D2h(mmm), D2d(�42m), C4v(4mm), C4h(4/m), D4(422), C8(8),

S8(�8)
10 C5v(5m), C5h(5/m), D5(52), C10(10), C5i(�5)
12 C6v(6mm), C6h(6/m), D3d(�3m), D3h(�6m2), D6(622), T(23),

C12(12), S12(12)
14 C7v(7m), C7h(7/m), D7(72), C14(14), C7i(�7)
16 D4h(4/mmm), D4d(�82m), C8v(8mm), C8h(8/m), D8(822),

C16(16), S16(16)
20 D5h(5/m2m), D5d(�5m)
24 D6h(6/mmm), D6d(122m), Th(m3), Td(�43m), O(432)
28 D7h(7/m2m), D7d(�7m)
32 D8h(8/mmm), D8d(162m)
48 Oh(m3m)
60 I(235)
120 Ih(m�3�5)



and the symmetry-derived positions g(Xi) from the origin; (b)

the distances d(Yi, g(Xi)); (c) the angle Ang(Yi, g(Xi))

subtended by Yi and g(Xi) at the origin. These values are all

tested against the tolerances using equation (1)

jd�Yi� ÿ dg�Xi�j< f �TOL1� and

Ang�Yi; g�Xi��< TOL2 or

d�g�Xi�;Yi�< TOL1; �1�

where the ®rst tolerance is a linear function, f(TOL1) of the

distance d(Yi), as depicted in (2). The variation of f(TOL1)

with d(Yi) is shown in Fig. 1.

f �TOL1� � ��d�Yi� ÿ 1� � TOL1 � 0:2� � TOL1 �2�
From (1), two atomic positions are regarded as equivalent if

either: (a) their distances from the origin are within f(TOL1)

of one another and the angle subtended at the origin by the

atom pair is less than TOL2 or (b) the distance between the

pair of atoms is less than TOL1.

This equivalence de®nition is used to minimize the effect of

molecular size on the effectiveness of the algorithm. In a large

molecule, two equivalent atoms on the periphery can be

further apart than a pair of atoms near the molecular centroid,

and yet still be approximately related by symmetry. Using the

®rst tolerance, f(TOL1), gives an unbiased estimate of such

situations for all atoms that lie in shells at ®xed distances

increasing around the origin, which increases in thickness

linearly with distance from the origin.

(v) If any atomic position fails the test in step 4 for any of

the generated operators, then that symmetry element is

rejected.

After all the possible operations are tested over all possible

directions, the operator matrices for any symmetry elements

detected in the molecule are derived. Finally, these operator

matrices are expanded into a full set of operators for the point

group by multiplying matrix pairs and storing any new

matrices which are generated. A new matrix Mnew is retained if

no previously stored matrix Mstored can be found that has all

elements Mstored(i,j) within 0.1 of Mnew(i,j). Each new matrix is

subsequently multiplied by both original and other new

matrices in the same way. This process may introduce

symmetry elements that were not detected in steps 4 and 5

because they failed the tolerance tests. However, it is neces-

sary to include all operators found in the multiplication step so

that the full set comprises a point group.

For each new matrix found, the rotation angle 360�/n is

derived along with the rotation vector. The matrix is idealized

to correspond to an exact rotation by regenerating the matrix

from the derived rotation vector and the rational rotational

angle closest to the derived angle according to certain criteria

(i.e. the axis order must be consistent with the operators

already found). This avoids the propagation of cumulative

errors in the multiplication procedure. Thus, a complete set of

matrices representing all possible symmetry operations

existing in a molecule is derived.

2.4. Assignment of point group

Using the method given above, the symmetry elements of

any molecule can be detected. Hence, the molecular point

group can be determined from the derived number of

symmetry operations and a set of transformation matrices.

There is a characteristic number of symmetry operations for

each point group, e.g. for a simple Cn point group there are

n ÿ 1 rotational symmetry operations and the identity

operator, so that n discrete symmetry operations are involved

in this point group. Table 2 lists the number of symmetry

operations in point groups which occur most frequently in

observed molecular structures. Moreover, each matrix repre-

sents a symmetry operation by a speci®c symmetry element.

Any atom, when transformed by this matrix, should result in

another equivalent atom in the molecule. If a symmetry

element, for instance a twofold axis, is coincident with an axis

of the de®ned coordinate system, the matrix usually has a

simpler form that is directly related to the rotation angle

360�/n. It is 180� for the twofold axis and 120, 240� for the

threefold axis, and so on. However, if the symmetry element is

not directly referred to its principal axes of inertia x, y and z,

the matrix can be expressed in a more general form

(Giacovazzo, 1993). The matrices can be derived from the

vectors corresponding to the symmetry elements.

The symmetry elements can be identi®ed from certain

characteristics of the matrices, i.e. there is a characteristic

value for the trace of a matrix for a particular rotation and the

determinant of a matrix will have a value of +1 or ÿ1

depending on whether the operation is a proper or improper

(inversion) axis, respectively (see International Tables for

Crystallography, 1992). The trace of a matrix T for a symmetry

operation can be expressed as

T � 1� 2 cos�m�2��=n�; �3�

where n is the order of the symmetry operation, m < n; m and

n are integers without common factors (except 1).

From the number and nature of the derived matrices, a

molecular point group can be assigned to each molecule under

investigation. For example, if n symmetry elements are

detected and all matrices represent one rotation axis (prin-

cipal axis), the point group is Cn. Similarly, when there are n

re¯ection planes accompanying a principal axis, the molecule

is assigned as Cnv. All the basic principles for the assignment of
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Figure 1
Graph of the tolerance function f(TOL1) (AÊ ) versus d(Yi) (AÊ ), the
distance of atom Yi from the origin at the molecular centroid.
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point groups can be applied, so that when the number of

matrices generated indicates more than one possible point

group, it is important to locate particular special symmetry

elements which are characteristic of a speci®c point group. For

example, when 24 symmetry elements are detected, there are

®ve possible point groups (Table 2): D6h, D6d, Th, Td and O.

Here D6h and D6d can be distinguished from the others by the

presence of a sixfold axis and the inversion centre distin-

guishes D6h from D6d. Of the remaining three, all have

multiple threefold and �4 or fourfold axes, but the presence of

an inversion centre i will indicate Th and mirror planes will

distinguish Td from O.

3. Implementation in RPLUTO

Molecular symmetry detection for CSD entries has been

implemented in RPLUTO,1 a program for the visualization of

molecules and crystals.

Several important enhancements to RPLUTO have

resulted from recent research activities (Motherwell et al.,

1999). One of many features in RPLUTO is the display of

planes or vectors, de®ned by clicking on relevant atoms, and

the visualization of molecular symmetry elements has been

developed using the vector and plane graphic display objects.

The assigned point-group and the major symmetry elements of

the point group are displayed superimposed on the molecule,

with colour coding for the symmetry types. Two examples are

shown in Fig. 2. Structure BIPHEN08 (Badour et al., 1986) has

D2h symmetry and BEYXUY (Lindeman et al., 1982) is D3.

For crystal structures with multiple molecules and ions,

symmetry detection is carried out on each molecule in turn or

on one molecule or ion selected by the user. The program

indicates whether the molecular fragment is a linear molecule

or a single atom in these cases.

H atoms are ignored by default, but there is an option to

include them where necessary for correct symmetry detection

(e.g. where the molecule with H atoms removed has a higher

symmetry). Symmetry is sometimes broken by the H atoms

and these atoms are in practice often inaccurately positioned

in X-ray crystal structures.

The symmetry matrices represent transformations of sets of

topologically equivalent atoms onto their equivalent sites,

within certain practical tolerances for distances and angles

given above. In general, the default values, TOL1 = 0.1 AÊ for

distance and TOL2 = 5.0� for angles, work well for most

structures. However, for some poorly re®ned structures or

structures re®ned in an incorrect space group, a lower

symmetry than expected may be observed. An interesting

example is the structure AACRUB, originally determined in

space group Cc (Bino et al., 1979). Our algorithms indicated a

C2 symmetric cation (C8H18O10Ru2)+ and Cs for the symmetric

BF4
ÿ anion. If the distance tolerance is slightly increased, D4h

symmetry can be detected for the cation. For the re-re®ne-

ment of the same structure in space group C2/c (AACRUB01;

Marsh & Schomaker, 1981), the expected D4h symmetry is

detected for the cation and Td for the anion. The inversion

centre of each cation lies on the crystallographic inversion

centre of C2/c and one of the twofold axes in Td coincides with

the twofold axis in C2/c.

RPLUTO may be used automatically to process a retrieved

subset of CSD entries giving an output ®le of the perceived

molecular symmetry. The output ®le includes the CSD

refcode, residue number, the detected molecular point group,

space group, Z and Z0 values. In addition, RPLUTO will read

data in CIF, SHELX or free-format (orthogonal or fractional

coordinates).

4. Validation

When applying the algorithm to detect approximate molecular

symmetry with the observed molecules recorded in the CSD, it

is important to assess the reliability of the results. It can be

seen from AACRUB, discussed above, that deviations of

atoms from their idealized/correct positions can result in the

assignment of symmetry that is lower than expected.

In order to assess the extent of molecular deformation

which the algorithm can tolerate, reference structures in

representative point groups, i.e. ideal molecules possessing

exact symmetry, were subjected to random shifts in the three

Cartesian coordinates (x, y, z) of each atom, such that the total

displacement of each atom did not exceed a maximum

displacement randomly generated, Dmax. For each reference

structure, 1000 deformed structures were generated for a

given Dmax and the symmetry detection applied. The results

are summarized in Table 3. These show that for displacements

Table 3
Validation results for randomly perturbed structures.

The number of atoms Natom and the maximum distance MDcen (AÊ ) of an atom
in the structure from the molecular centroid of the reference structure are also
given (see text, Dmax is the maximum displacement randomly generated).

Model structures Symmetry found

Symmetry Natom MDcen (AÊ ) Dmax (AÊ ) 0.125 0.100 0.075

Ci 12 3.13 Ci 551 841 989
C1 449 159 11

C3 13 2.60 C3 770 976 1000
C1 230 24

C4h 9 2.92 C4h 874 990 1000
C2h 91 8
Cs 35 1
C1 0 1

C2v 11 3.03 C2v 931 998 1000
Cs 63 1
C2 2
C1 4 1

C5v 11 2.60 C5v 736 978 1000
C5 9
Cs 193 19
C1 62 3

D2h 13 4.50 D2h 931 997 1000
C2v 69 3

D7d 15 2.69 D7d 1000 1000 1000
Oh 13 3.00 Oh 999 1000 1000

D4h 1

1 RPLUTO may be downloaded for non-commercial research purposes from
www.ccdc.cam.ac.uk/prods/rpluto.



less than TOL1 (0.1 AÊ ), the symmetry of the ideal reference

structure is found in all cases except Ci. For displacements

comparable to the tolerance limit, lower symmetries are

detected in < 10% of the perturbed structures for most cases.

No correlation was found between the point group detected

and either the RMS (root mean square) distortion of the

molecule from the original reference or the maximum

displacement of any atom in the molecule, i.e. a lower

symmetry was not always detected for the molecules which

have the largest RMS deviations. This is probably because the

detection of symmetry is dependent on the correlation of

displacements of one or more pairs of atoms. If sets of atoms

are displaced in the same direction, symmetry may be main-

tained (e.g. along the ®vefold axis direction in C5v). This occurs

most frequently in lower-symmetry structures; in higher-

symmetry point groups, even if some of the symmetry

elements are not detected initially they may be generated in

the matrix multiplication step. In C5v, for example, detection

of two mirror planes approximately 72� apart will lead in the

expansion step to the full set of operators for C5v. This is not

possible in Ci and C3, with only one rotation or rotation±

inversion axis, if no symmetry is found in the ®rst detection

step.

Examination of Table 3 shows that in structures containing

an inversion centre, this symmetry is more easily destroyed by

perturbation compared with other symmetry elements. The

results from the tests should also

be dependent on the shape and

size of selected molecules, but it

is dif®cult to assess these factors

due to the dif®culty of

constructing similar molecules

with different symmetries but

comparable numbers of atoms.

5. Conclusions

A combination of two-dimen-

sional topological graph analysis

and three-dimensional percep-

tion in a symmetry detection

program provides a useful tool

for the recognition of molecular

symmetry in experimental

molecular structures. The vali-

dation analysis using molecules

with small perturbations from

exact symmetry in most chemi-

cally relevant point groups

shows that the expected

symmetry can be found correctly

in most cases using acceptable

tolerance values. Detection of

higher molecular symmetries

seems to be more stable than for

lower symmetries within the

perturbation tests.

A systematic study of mole-

cular symmetry derived using

this method for CSD structures

in speci®c space groups is now in

hand and will be presented in a

future publication.

JAKH thanks the EPSRC

(UK) for the award of a Senior

Research Fellowship.
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Figure 2
Three-dimensional display of molecules with detected symmetry elements in the RPLUTO program. The
chemical diagram is also printed here for: (a) BIPHEN08, detected as D2h, space group P21/a, viewed from
one of the detected twofold rotation axes. Mirror planes are shown in grey. (b) BEYXUY, detected as D3,
space group R�3c, viewed from the detected threefold rotation axis.
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